Correcting Syntactic Annotation Errors Based on Tree Mining
نویسندگان
چکیده
منابع مشابه
Correcting Syntactic Annotation Errors Based on Tree Mining
This paper provides a new method to correct annotation errors in a treebank. The previous error correction method constructs a pseudo parallel corpus where incorrect partial parse trees are paired with correct ones, and extracts error correction rules from the parallel corpus. By applying these rules to a treebank, the method corrects errors. However, this method does not achieve wide coverage ...
متن کاملCorrecting Syntactic Annotation Errors Using a Synchronous Tree Substitution Grammar
This paper proposes a method of correcting annotation errors in a treebank. By using a synchronous grammar, the method transforms parse trees containing annotation errors into the ones whose errors are corrected. The synchronous grammar is automatically induced from the treebank. We report an experimental result of applying our method to the Penn Treebank. The result demonstrates that our metho...
متن کاملCorrecting Errors in a Treebank Based on Tree Mining
This paper provides a new method to correct annotation errors in a treebank. The previous error correction method constructs a pseudo parallel corpus where incorrect partial parse trees are paired with correct ones, and extracts error correction rules from the parallel corpus. By applying these rules to a treebank, the method corrects errors. However, this method does not achieve wide coverage ...
متن کاملCorrecting Dependency Annotation Errors
Building on work detecting errors in dependency annotation, we set out to correct local dependency errors. To do this, we outline the properties of annotation errors that make the task challenging and their existence problematic for learning. For the task, we define a feature-based model that explicitly accounts for non-relations between words, and then use ambiguities from one model to constra...
متن کاملDetecting and Correcting Syntactic Errors in Machine Translation Using Feature-Based Lexicalized Tree Adjoining Grammars
Statistical machine translation has made tremendous progress over the past ten years. The output of even the best systems, however, is often ungrammatical because of the lack of sufficient linguistic knowledge. Even when systems incorporate syntax in the translation process, syntactic errors still result. To address this issue, we present a novel approach for detecting and correcting ungrammati...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEICE Transactions on Information and Systems
سال: 2017
ISSN: 0916-8532,1745-1361
DOI: 10.1587/transinf.2016edp7357